Winchester Systems

White Paper

FlashNAS™ Unified Storage
Affordable Feature-Rich NAS

Supports CIFS & NFS for Windows, Linux, Unix & MAC OS

September 2012

101 Billerica Ave, Bldg. 5, Billerica, MA 01862 781-265-0200 WWW.Winsys.com

WINCHESTERSYSTEMS®

Purpose-Built Storage

Executive Summary

In this day and age, almost every organization uses computer applications running on a mix of operating systems (OSes): usually
either a version of Microsoft Windows or some flavor of Unix/Linux. Most Unix applications share files over the network using the
Network File System (NFS) protocol. Windows applications, on the other hand, almost always use Server Message Block (SMB, also
known as Common Internet File System or CIFS, which will be used throughout this white paper moving forward).

At the same time, IT shops are continually asked to do more with less. A typical imperative: more efficient use of server and storage
resources. As a result, consolidation has become a normal part of operating just about any data center with more than a handful of
servers. Consolidating storage means accessing data over a network from multiple servers—regardless what OS they run. So it’s no
surprise multiprotocol support has become a battle ground for leading NAS vendors. But the way their products handle the
idiosyncrasies of Unix and Windows security is also a huge factor in keeping IT complexity—and therefore costs—under control.

How does one go about building a multiprotocol NAS server? A popular technique among low-cost vendors and do-it-yourselfers is
to cobble together open-source software packages atop Linux to run on an industry-standard server. But it comes with support and
interoperability risks. At the other extreme, vendors such as EMC and NetApp build systems from the ground up, implementing their
own OS kernel, file system, networking, NFS protocol, and Windows CIFS stack. Such products offer high-end capabilities—but at
high-end prices. And as they add more and more features and functions, customers face increased operational complexity.

Winchester Systems FlashNAS strikes a middle ground, combining the leading industry-standard platform with purpose-built storage
expertise. Integrating state-of-the-art NFS with Microsoft Windows Storage Server, FlashNAS provides industry-leading functionality
and support as robust as that available from competitors such as EMC or NetApp—without needing a new OS or recreating
Microsoft’s entire CIFS protocol stack. FlashNAS uses innovative security-model mapping to seamlessly integrate NFS access
permissions with Windows security to provide simple, transparent and secure data access.

That means lower costs, better reliability, and robust support—making Winchester Systems FlashNAS a natural choice as the low-
cost, high-performance multiprotocol file server.

WINCHESTERSYSTEMS®

Purpose-Built Storage

Overview of FlashNAS Unified Storage

Winchester Systems has delivered the FlashNAS system to many clients over the years, primarily based on Windows’ CIFS
architecture. To accommodate the growing need for supporting both NFS and CIFS in one device, FlashNAS Unified Storage

empowers IT to use one efficient, low-cost platform to meet the needs of the enterprise.

Some of the primary features of the FlashNAS Unified Storage include:

Software Feature

User Benefit

Windows-based platform

Industry-standard — Short learning curve

Configuration

Easy to use GUI

Feature-rich platform

De-dupe, snapshot and more.. ..

CIFS and NFS protocols

Key standards including Windows, Linux,-Unix & MAC

Network protocol support

1GbE, 10GbE, 40GbE and InfiniBand

iSCSI support

Supports iSCSI SAN

Add-in remote replication

CA Replication for remote backup and disaster recovery

Hardware Feature

User Benefit

Dual RAID and NAS processors

Parallel processing for speed

Server-based NAS

Dedicated to network support

Hardware RAID

Dedicated to disk I/O

PCle bus for expandability

Highly configurable

Serviceable and upgradeable

Hot-swap field replaceable units

Highly scalable

One server expands to 2PB

1U, 2U and 4U server options

The right appliance for each user’s needs

1U To 200 TB
2U To 2 PB plus faster processors
4U Redundant FlashServer-HA for high-availability

Host-based RAID and External RAID systems

Flexible options for meeting all needs

Host-based RAID

Low-cost, up to 200TB

External RAID

High speed RAID to 2PB in one cabinet

FlashNAS Unified Storage from Winchester Systems offers a very easy to use system that provides a myriad of options to meet the
varying needs of clients, without sacrificing performance. This modular architecture allows for low-cost scalability, enabling low-cost
upgrades throughout the life of the system.

The rest of this white paper explores multiprotocol file access challenges in depth, and explains Winchester Systems’ approach to
addressing those challenges with FlashNAS.

WINCHESTERSYSTEMS®

Purpose-Built Storage

Why Multiprotocol NAS?

Believe it or not, there are IT shops—far and few between though they may be—that enjoy the luxury of a homogenous
environment, running one operating system (OS) on all servers and desktops used by the organization. They share files over the
network using a single, common protocol: typically either the Network File System (NFS) protocol used by most Unix and Linux
systems, or Server Message Block (SMB),i which is predominantly used on Windows computers (CIFS protocol).

Most of us, however, must deal with a mix of OSes and network file-access protocols. The differences between the operating
systems have been the subject of endless discussion and debate—sometimes approaching the intensity of religion—through the
years. But these differences are also quite evident in their respective network file-access protocols. Each has a security model that
reflects that of its native-OS file system. NFS, for example, uses a Unix file system (UFS) permissions model, granting read, write
and/or execute access to three categories of user: the user itself, its associated group, and everyone else. SMB, of course, inherits its
security model from the Windows NTFS file system, using Access Control Lists (ACLs) to explicitly grant or deny access to specific
users or groups.

What’s the easiest way to deal with this? Keep the two protocols and their data separated. And the simplest way to do that is to use
separate file servers: Windows for CIFS and Unix/Linux for NFS. After all, general-purpose servers have been serving their files to
other computers for almost as long as networks have existed. But when it comes to performance and scalability, it’s no surprise that
the race goes to storage-optimized platforms. More important, using general-purpose servers this way adds administrative
complexity and cost. Routine functions such as backup and restore are duplicated. And it runs counter to the approach most
organizations are taking to get more for their IT dollar: consolidating their physical servers and storage.

Ok, how about keeping NFS and CIFS protocols and their data separate, but using a common file server? The benefits, like those of a
multi-function printer/scanner/copier/fax machine, are straightforward: removing cost and complexity, and increasing resource
efficiency—without sacrificing functionality. And, in fact, this is the most likely scenario in today’s IT shops.

So it’s no surprise support for both NFS and CIFS has become a fundamentally required feature of network-attached storage (NAS)
products. But there are times when applications running on Windows and Unix systems need shared access to the same data sets,
regardless of the network protocol used. That means a NAS product serving those files must somehow provide consistent security
for those files—regardless of the network protocol used.

Sounds reasonable. But there’s a catch: because the ACL-based security model of NTFS is so much richer than that of UFS, a direct
mapping between them is not mathematically possible. As a result, storage and software vendors have had to come up with non-
mathematical strategies to blend these two models together as compatibly as possible.

The rest of this white paper describes the approach used by Winchester Systems to address this challenge, bringing industry-leading
multiprotocol capability to its customers at a fraction of typical industry-leader prices.

Laying Groundwork

How does one go about building a multiprotocol NAS product that serves files to both Windows and Unix/Linux systems? The
options can be summarized into three fundamental approaches:

Build on a Unix/Linux foundation. This option begins with a Unix or Linux operating system and its built-in Unix file system
and NFS stack, and adds CIFS-server software. The CIFS package is responsible for implementing the NTFS security scheme,
and maintaining connection states. One popular example is Samba, an open-source package available for free. A frequent
choice for do-it-yourselfers, this approach has attractively low acquisition costs, but comes with significant disadvantages.

WINCHESTERSYSTEMS®

Purpose-Built Storage

The most obvious is obtaining support when problems occur. Less obvious is the challenge of ensuring interoperability with
Microsoft’s CIFS implementations in Windows, which tend to change—and even add features—with every OS update.
Typically, Unix/Linux implementations rely on “lowest common denominator” security settings and Windows 2000 era
credential exchanges.

Build on a Windows foundation. This option begins with a Windows Server platform, which provides built-in CIFS and an
optional NFS stack. Storage vendors typically use a special OS version from Microsoft named “Windows Storage Server”
that adds single-instance storage for greater efficiency, index-based search capabilities, and file-server performance
optimization. This approach costs a bit more up front than a Linux-based platform, but has an obvious advantage: it’s based
on Microsoft’s own implementation of its complex ACL-based security and CIFS protocol, ensuring interoperability—and
support—regardless how complicated the network environment in which it’s deployed. Microsoft’s NFS stack provides basic
functionality and simple integration. But it’s chronically years behind in implementing current NFS versions, meaning NFS
security and performance can lag behind the industry standard.

Build your own foundation. This option is the most ambitious, and is the one taken by NetApp and EMC for their NAS
products. It requires the vendor to build its own operating system kernel and file system, as well as NFS and CIFS protocol
stacks. And deal with bridging the two security models. NetApp chose a simple approach to handing user and permission
mapping, which we’ll describe later. EMC, on the other hand, offers several schemes for both. A storage admin must decide
which user-mapping method to use before configuring file-sharing services, and which permissions-mapping method to use
for each file system being served. Needless to say, both companies invested heavily in their implementations, and they
charge accordingly.

Each choice seems to require an unfortunate trade-off between risk, capital cost and operating complexity. The least-expensive
option carries the most risk and operational complexity, and the safest option is also the most expensive. Isn’t there a middle ground
somewhere? Can’t someone find a way to combine the best of these options for customers at the lower cost and lower risk?

That’s how the storage architects at Winchester Systems approached the problem. Leveraging over 25 years of NFS expertise, the
company integrated its own NFS server stack with Windows Storage Server 2008 R2. The result: a low-cost, high-performance file
server that provides current, state-of-the-art features and stability for both NFS and CIFS protocols.

It may not seem obvious, but the rich NTFS file-system semantics and security model form an excellent platform for building a full-
featured NFS server. Now that Winchester Systems engineers had a solid foundation, they needed to deal with two dramatically
different security schemes.

A Tale of Two Models

Sun Microsystems, an early pioneer in Unix and TCP/IP networking, developed NFS in the mid 1980s as a way to enable users to
access files on a remote machine in the same way as a local file. Sun’s top design goals for NFS were simplicity, performance, and
multi-vendor interoperability, and NFS gained widespread use on Unix systems during the 1990s." After some setup by an
administrator, remote files appear within the Unix file system directory tree and are indistinguishable from files on a directly
attached disk drive. The NFS protocol itself is widely described as “stateless,” meaning each exchange of messages over the network
has no dependence on previous exchanges. Though this approach has interoperability benefits, and makes transparently riding out
network link failures simpler, it also makes it very difficult to add more-advanced file system capabilities such as locking.

Naturally, NFS uses the same security model as UFS." Files and directories are owned by a user, and are also assigned to a group
(usually the same group to which the file owner belongs). Access is controlled for each of three categories: user (the owner), group,

WINCHESTERSYSTEMS®

Purpose-Built Storage

and other. A user that is neither the file owner nor a member of the file’s assigned group is considered “other.” There are three
types of access permission specified for each category:

e Read: allows reading file contents. When set for a directory, allows reading the list of file names within that directory.
Accessing those files is not allowed unless the execute permission is also set for the directory (and each file’s permissions
allow it).

e Write: allows writing file contents. When set for a directory, allows creating, deleting, and renaming files within that
directory—if execute permission is also set for the directory.iV

e Execute: allows executing a file as a program, including application binaries and shell scripts. When set for a directory,
allows accessing a file within the directory if its name is known (and that file’s permissions allow it).

Creating, deleting and renaming files, as well as changing attributes such as owner or permissions, works the same way over NFS as
it does on a local file system. That means individual users can change file and directory permissions on their files whenever they wish
to change what they share, and how widely they share it.

The evolution of CIFS was similar, and started around the same time. It was originally designed by IBM to extend the local DOS file
system into a networked file system. Microsoft later modified it extensively to form a networked extension of the Windows NT file
system (NTFS)." After some setup work by an administrator, a new “drive” appears on the Windows system, and behaves as if
directly attached to the system. To pull this off, CIFS maintains state information about connections to the server, and even
connections to individual files for coordinating simultaneous shared access and caching across multiple client systems.

Naturally, CIFS uses the NTFS security model. Instead of a permission attribute, like in Unix, each NTFS file or directory has a security
descriptor that contains, among other things, the owner’s Security ID (SID) and an Access Control List (ACL).Vi Each entry in the list,
called an Access Control Entry (ACE), explicitly allows or denies access to a single user or group. The “standard permissions” that can
be specified include:

e Full Control

e Modify

e Read

e Read & Execute
o Write

e Ljst Folder Contents (folders only)

These standard permissions are actually groupings of “Special Permissions,” which are more detailed—and more numerous. For
example, the standard Read permission includes special permissions List Folder/Read Data, Read Attributes, Read Extended
Attributes, Read Permissions, and Synchronize.Vii

When a user requests access to a file, each ACE in the file’s ACL is checked—in order of their appearance in the list. When an ACE is
found that matches the user/group and the requested access, the search stops and the request is either granted or denied. If no
matching ACE is found, the access is denied. This provides an incredibly flexible means to enforce complex security rules such as
“allow read and write access by all users in one group unless they are also members of another group, in which case they get read-
only access.”

The differences between NFS and CIFS security models are stark. Translating a set of permissions from one model to the other is a
daunting challenge at best. Yet the need for applications to shared access to networked file data, regardless what operating system
they run on, is real. So Winchester Systems needed to come up with a way to merge these two models.

WINCHESTERSYSTEMS®

Purpose-Built Storage

It Starts With A User

The good news is that the security models
in both Unix and Windows, and thus NFS

and CIFS, are based on the concept of
authenticating a user, and checking
whether that user is authorized to access
an object. That means mapping Unix users
to Windows users, and vice-versa, can
form the basis for a bridge between the
two models.

For Windows-based users accessing

FlashNAS via CIFS, the process is obviously
uiD
GID

Windows Storage Server, FlashNAS can
participate seamlessly in one or more

Windows domains. For Unix-based NFS
users, Winchester Systems makes this
process equally transparent. Unix NFS
requests include User Identifiers (UIDs)

and Group Identifiers (GIDs), which are

mapped to a corresponding Windows-

based network user, and file access is

| Active Directory domain members

i transparent. Because it’s based on
e e R ! provided in the context of the mapped

user to ensure authenticated access.

Figure 1, FlashNAS authentication and account mapping Access may be provided to both local
users and domain users.

In addition to one-to-one mapping between Windows and Unix user and group accounts, FlashNAS permits one-to-many mapping.
This lets you associate multiple Unix users with a single Windows user, or multiple Windows users with a single Unix user. This can
be useful, for example, when you do not need to maintain separate Unix accounts for individuals and would rather use a few
accounts to provide different classes of access permission.

FlashNAS provides two name-mapping methods: automatic and manual. Automatic mapping takes NFS user and group names and
matches them to their corresponding Windows user and group names. This automation reduces the risk of incorrect mapping—and
saves administrators a lot of time creating and maintaining maps compared to entering user and group mapping one at a time.
Administrators can select all Windows users, specific domains, or even specific users per domain for automatic mapping. Of course,
mapping entries can also be created and modified manually, and can be used in conjunction with automatic mapping.

For users and groups that do not appear in the mapping database, an administrator can specify “default mappings.” A common
example would be to map user “nobody@abc.com” to “\\WIN_DOMAIN\Guest” and group “nobody@abc.com” to
“\\WIN_DOMAIN\Guests.” Unix and Windows use those names to indicate an unauthenticated user, which by default has severely
limited access (if any). Using this default mapping ensures an unauthenticated user cannot be inadvertently mapped to a real user.

WINCHESTERSYSTEMS®

Purpose-Built Storage

FlashNAS also periodically refreshes its mapping database from the source databases, ensuring that it is always kept up to date as
changes occur in Windows and UNIX name spaces. You can also refresh the database anytime you know the source databases have
changed. By default, the name mappings database is stored on the local system. An administrator can also configure name mappings
to be stored on a network-wide Active Directory server via the Lightweight Directory Access Protocol (LDAP), providing a centralized
database for use by multiple FlashNAS servers. If desired, administrators can also export or import mappings to or from a disk file.

FlashNAS can obtain Unix user and group information from a directory service such as NIS, NIS+, and LDAP, or directly from a Unix
host,

¥ and supports user authentication performed by NFS clients (the default for most Unix systems) and Kerberos.
Ok, so FlashNAS has a straightforward way to map Unix NFS users to Windows users. Now comes the tricky part. Translating file and
directory permissions!

ACEs Up Their Sleeve

Because of the richness of Windows’ ACL-based security model, FlashNAS stores all of its permissions information—regardless of
what type of user set them—as ACLs in the NTFS file system. The permissions that apply to a given NFS user depend on the Windows
user and group names to which that user is mapped—and if that user has an “Access-Allowed” Access Control Entry (ACE) defined in
the ACL for the resource requested.

The reason FlashNAS can do this is
because Unix File System security is,
with a couple minor exceptions,” a

NTFS Access Control

: subset of the rich NTFS security model
Lists (see figure 2).
= Each list entry allows or denies any combinati . .
a?rigfﬁsfranif:s‘:rs::g;t;zs - When an NFS client accesses an existing
PHEhsiREUnes : file or directory, FlashNAS determines
» Traverse Folder/Execute File
« List Folder/Read Data the permissions for that client by

» Read Attributes -

* Read Extended Attributes UFS Permissions

» Create Files/Write Data « Specify rights for owner,
s Create Folders/Append Data group, “other”

* Append Data « Rights include:

= Write Attributes o Read handling rules, FlashNAS processes ACEs
= Write Extended Attributes « Write

e Delete Subfolders and Files * Execute
» Delete ACL. Because multiple ACEs may apply to
* Read Permissions

* Change Permissions

= Take Ownership grant or deny permissions, the combined
= Synchronize

combining every ACE that applies to the
client based on the name mappings.
Following standard Windows ACL-

in the order in which they appear in the
a given NFS user, and ACEs can either

set of entries may result in multiple ACEs
applying to the same user for a given
permission. When this happens,

Figure 2, Unix File System security is a subset of NTFS ACL-based security FlashNAS applies the first entry found in

the ACL.

After consulting the ACL for a resource, FlashNAS grants a given NFS user access to the resource if the following conditions are true:

e The NFS user is mapped to a user or group that has an Access-Allowed ACE in the ACL, or the Everyone group has an Access-
Allowed ACE in the ACL.

FlashNAS Unified Storage 781-265-0200 WWW.Winsys.com

WINCHESTERSYSTEMS®

Purpose-Built Storage

e There are no Access-Denied ACEs earlier in the ACL for the user and groups (including Everyone) that apply to the NFS user.

When an NFS client creates file or directory, or requests a change in permissions, FlashNAS sets the Access Control List (ACL) for the
affected resource according to the permissions set by the client. Because UNIX permissions are not identical to NTFS permissions,
FlashNAS translates the permissions in the following way:

e For each “User” permission set by the client, FlashNAS adds the corresponding NTFS permission to the Access-Allowed ACE
for the Windows user that owns the resource.

e For each “Group” permission set by the client, FlashNAS adds the corresponding NTFS permission to the Access-Allowed
ACE for the Windows group that owns the resource.

e For each “Other” permission set by the client, FlashNAS adds the corresponding NTFS permission to the Access-Allowed ACE
for the Windows group Everyone.”

Because it directly creates and modifies ACEs in a resource’s ACL, FlashNAS can create ACLs with ACEs arranged in an order that
wouldn’t normally appear on a Windows system—but are needed to get the desired resulting permissions requested by an NFS
client.

For example, suppose Unix user “joe” wants to share a program file so that all users have full access, except members of his primary
group, “sales,” to which he wants to grant read-only access—and he wants to guarantee he still has full access. The Unix permissions
he’d want to set are:

e User: read, write, execute
e Group: read, execute
e Other: read, write, execute

The resulting ACL needs to grant full access to everyone except that group. Windows standard canonical ACL rules require Access-
Denied ACEs to be placed before Access-Allowed ACEs." But if the ACL was to have an Access-Denied ACE for write access by group
“sales” before the Access-Allowed ACE for full control by user “joe,” that user would end up being denied write access because “joe”
is a member of the “sales” group. So FlashNAS writes the ACEs in a different order, granting “joe” full access before denying write
access to “sales.”"

If a CIFS user later changes the permissions, the ACL will be overwritten as requested by the Windows user—following the Windows
canonical rules. And that’s fine; a Windows user expects Windows ACL behavior. Just as an NFS user expects NFS permissions
behavior. In other words, FlashNAS assigns permissions to best enforce the rules appropriate for the authorized user—and
platform—that set them.

Other multiprotocol NAS vendors offer similar permissions-handling behavior. For example, Netapp uses its own operating system
and file system so-stored files can have either Unix permissions or a Windows ACL—but not both. If a file has a Windows ACL and a
Unix user changes permissions via NFS, the ACL is deleted and Unix permissions are created. Conversely, if a file has Unix
permissions and a Windows user goes to change them, the Unix permissions are deleted and an ACL is created.

EMC, which also uses its own file system in its Celerra product, can also write either Unix permissions or Windows ACLs. In fact, it
always writes both. The company also requires administrators to choose from a half dozen access-checking policies for each file
system mounted on the NAS server. Policy options include maintaining both Windows ACLs and Unix permissions but enforcing
them only on their respective protocols, maintaining both sets of permissions and allowing access from either platform only if both
sets of permissions allow it, maintaining both sets of permissions and modifying both regardless which protocol set it, maintaining

WINCHESTERSYSTEMS®

Purpose-Built Storage

both sets but only checking the one that was last written, and so on. It’s no surprise, then, to find EMC’s multiprotocol guide alone is
around 80 pages long!

Keeping It Simple
Most organizations are already dealing with more than enough complexity in their IT shops. And operational costs, which are usually

mostly human labor, still dominate most IT budgets. Sharing files among applications, regardless what operating system they run on,
needs to be as simple—and efficient—as possible.

For most IT shops, that means consolidating file shares onto Network Attached Storage servers that can be accessed from any
operating system using its native file-sharing protocol. Multiprotocol support has become a critical feature of leading NAS vendors.
But the way NAS servers handle the idiosyncrasies of Unix and Windows security, and their respective network file access protocols
NFS and CIFS, is also a huge factor in keeping IT costs under control. The simpler and more efficient, the better!

By integrating state-of-the-art NFS with industry-standard Windows Storage Server, Winchester Systems brings industry-leading
functionality and support to FlashNAS—as robust as that available from competitors such as EMC or NetApp—without needing to
implement its own OS kernel and file system, recreate Microsoft’s entire CIFS protocol stack and Active Directory integration, or
cobble together open-source packages.

That means lower costs, better reliability, and robust support—making Winchester Systems FlashNAS a natural choice as the low-
cost, high-performance multiprotocol file server.

Footnotes

' SMB is also often referred to as Common Internet File System (CIFS). CIFS was originally a proposed standard from Microsoft based
on Windows NT 4.0 and Windows 2000 implementations of CIFS. However, that standard was not adopted by the industry.
Microsoft later redefined CIFS to refer to a now-obsolete Windows NT LAN Manager (NTLM) implementation of SMB. Despite this
interesting bit of trivia, most IT people use the terms CIFS and SMB interchangeably.

"The first widely adopted version was NFS version 2, published as a standard by the Internet Engineering Task Force in 1989 (see
http://tools.ietf.org/html/rfc1094). NFSv3, which added new capabilities such as larger file support, was published in 1995 (see
http://www.ietf.org/rfc/rfc1813.txt).

" NFS version 4, which has steadily displaced version 3 on deployed Unix and Linux systems, improves client-server protocol security
and adds Access Control Lists (ACLs). FlashNAS supports NFSv4 and its associated ACLs. However, most Unix/Linux administrators
view ACLs as cumbersome and continue to use only basic Unix File System (UFS) permissions. So for simplicity, this paper focuses on
the more limited NFSv3 security model. For detailed information on FlashNAS NFSv4 features, refer to the product documentation.
" Without execute permission, write permission on a directory is effectively meaningless. What’s more, if a user has write and
execute permission to a directory, they can delete and rename files within that directory regardless of permissions set on the
individual files. This is an often-misunderstood feature of Unix directories.

¥ The company introduced a significantly new version, SMB 2.0, with Windows Vista; SMB 2.1 with Windows 7 and Windows Server
2008 R2; and SMB 3.0 with Windows 8 and Windows Server 2012. Although proprietary, Microsoft has published the protocol
specification for other vendors to build interoperable products (see http://msdn.microsoft.com/en-
us/library/cc246482(PROT.13).aspx).

' There are actually two access control lists in NTFS: the Discretionary Access Control List (DACL), and the System Access Control List
(SACL). The DACL controls access to an object, and the SACL controls logging of access attempts. ACLs referred to in this paper are
DACLs.

“I' For a more detailed discussion of NTFS access control and permissions, see http://technet.microsoft.com/en-us/library/cc770749.
A Unix host stores its local User ID (UID) and Group ID (GID) data in two files: a passwd file that associates each user with a
password, a UID and a GID; and a group file that associates each group with its GIG and the UIDs of the group’s members. Obtaining
this information from a Unix host involves copying these two files to the Winchester Systems NFS Server system.

*The “sticky bit,” for example. Refer to your favorite Unix documentation for more information.

“FlashNAS maps the Unix permission “Other” to the special Windows group Everyone. However, setting permissions for the
Everyone group in Windows is not the same as setting “Other” permissions in Unix. All users and groups in Windows belong to the
Everyone group, including the user and group owners of shared resources. “Other” permissions for a resource apply only to Unix
users who do not own the resource and do not belong to the primary group of the owner. Therefore, when a user or administrator
sets “Other” permissions for a shared resource, you are actually setting permissions for all users and groups that can access that
resource.

“ The full canonical rules include handling of ACEs inherited from a resource’s parent, grandparent, and so on up the directory tree.
" Yes, the desired behavior can be obtained by writing a different ACL that can adhere to Microsoft’s canonical rules, but doing so in
the context of programmatically translating Unix permissions to Windows ACLs—and back again—is impractical.

viii

